37 research outputs found

    New mixed 3d cation fluorinated materials as positives electrodes for lithium-ions batteries : elaboration, structural characterization and electrochemical properties

    No full text
    Ce travail concerne l’application d'une stratĂ©gie de synthĂšse en deux Ă©tapes pour prĂ©parer de nouveaux matĂ©riaux fluorĂ©s Ă  base de fer dans l’objectif de les tester en tant que composĂ© actif d’électrodes positives pour batteries Ă  ions lithium : Ă©laboration d’un prĂ©curseur suivie d’un traitement thermique adĂ©quat. L’étude porte dans un premier temps sur les fluorures hydratĂ©s 3D Ă  valence mixte de fer, Fe2F5(H2O)2 de structure weberite inverse et Fe3F8(H2O)2. Par traitement thermique sous air, deux hydroxyfluorures sont stabilisĂ©s, FeF2.5(OH)0.5 de structure pyrochlore et FeF2.66(OH)0.34 de structure HTB respectivement. L’étude de leur comportement Ă©lectrochimique montre d’excellentes capacitĂ©s ≈ 170 mAh.g-1 (2-4 V). Afin d’étudier l'impact de la nature des cations 3d sur les performances, les hydrates Ă©quivalents Ă  cations mixtes, M2+Fe3+F5(H2O)2 (M = Mn, Ni) et M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu ; M3+ = V, Fe), ont Ă©tĂ© synthĂ©tisĂ©s en milieu solvothermal dans une seconde partie. Des intermĂ©diaires amorphes oxyfluorĂ©s apparaissent lors de la dĂ©gradation thermique sous air avec en particulier CuFe2F6O, obtenu Ă  partir de CuFe2F8(H2O)2, qui prĂ©sente une capacitĂ© remarquable de 310 mAh.g-1 (2-4 V). Enfin, des fluorures d’ammonium Ă  cations mixtes NH4M2+Fe3+F6 (M = Mn, Co, Ni, Cu), obtenus par mĂ©canosynthĂšse et la voie solvothermale, ont conduit aux premiers fluorures Ă  cations mixtes trivalents M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) de structure pyrochlore par oxydation topotactique sous fluor molĂ©culaire F2 en tempĂ©rature.This work presents an innovative synthetic strategy to develop new fluorinated iron-based materials as positive electrodes for Li-ion batteries. This two-step elaboration method consists in the preparation of fluorinated precursors followed by an appropriate thermal treatment. The study initially focuses on tridimensional mixed valence iron fluorides, Fe2F5(H2O)2 with the inverse weberitestructural type and Fe3F8(H2O)2. The calcination under air leads to the formation of two new hydroxyfluorides, FeF2.5(OH)0.5 and FeF2.66(OH)0.34 with pyrochlore and HTB structural types respectively which present excellent electrochemical capacities ≈ 170 mAh.g-1 (2-4 V). In a second part, the 3d-cation effect on oxyfluorides performances is evaluated from equivalent mixed metal cation hydrates, M2+Fe3+F5(H2O)2 (M = Mn, Ni) and M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu, M3+ = V, Fe), synthesized solvothermally. Their thermal degradation under air reveals amorphous oxyfluorinated intermediates and among them, CuFe2F6O, obtained from CuFe2F8(H2O)2, with an remarkable capacity of 310 mAh.g-1 (2-4 V). In the last part, mixed ammonium fluorides (NH4)M2+Fe3+F6 (M = Mn, Co, Ni, Cu) are synthesized using mechanochemical and solvothermal routes. Their thermal topotactic oxidation under molecular fluorine F2 leads to the first trivalent mixed-cation fluorides M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) with pyrochlore typestructure

    Nouveaux matériaux fluorés d'électrodes positives à cations 3d mixtes pour batteries à ions lithium : élaboration, caractérisation structurale et propriétés électrochimiques

    No full text
    This work presents an innovative synthetic strategy to develop new fluorinated iron-based materials as positive electrodes for Li-ion batteries. This two-step elaboration method consists in the preparation of fluorinated precursors followed by an appropriate thermal treatment. The study initially focuses on tridimensional mixed valence iron fluorides, Fe2F5(H2O)2 with the inverse weberitestructural type and Fe3F8(H2O)2. The calcination under air leads to the formation of two new hydroxyfluorides, FeF2.5(OH)0.5 and FeF2.66(OH)0.34 with pyrochlore and HTB structural types respectively which present excellent electrochemical capacities ≈ 170 mAh.g-1 (2-4 V). In a second part, the 3d-cation effect on oxyfluorides performances is evaluated from equivalent mixed metal cation hydrates, M2+Fe3+F5(H2O)2 (M = Mn, Ni) and M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu, M3+ = V, Fe), synthesized solvothermally. Their thermal degradation under air reveals amorphous oxyfluorinated intermediates and among them, CuFe2F6O, obtained from CuFe2F8(H2O)2, with an remarkable capacity of 310 mAh.g-1 (2-4 V). In the last part, mixed ammonium fluorides (NH4)M2+Fe3+F6 (M = Mn, Co, Ni, Cu) are synthesized using mechanochemical and solvothermal routes. Their thermal topotactic oxidation under molecular fluorine F2 leads to the first trivalent mixed-cation fluorides M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) with pyrochlore typestructure.Ce travail concerne l’application d'une stratĂ©gie de synthĂšse en deux Ă©tapes pour prĂ©parer de nouveaux matĂ©riaux fluorĂ©s Ă  base de fer dans l’objectif de les tester en tant que composĂ© actif d’électrodes positives pour batteries Ă  ions lithium : Ă©laboration d’un prĂ©curseur suivie d’un traitement thermique adĂ©quat. L’étude porte dans un premier temps sur les fluorures hydratĂ©s 3D Ă  valence mixte de fer, Fe2F5(H2O)2 de structure weberite inverse et Fe3F8(H2O)2. Par traitement thermique sous air, deux hydroxyfluorures sont stabilisĂ©s, FeF2.5(OH)0.5 de structure pyrochlore et FeF2.66(OH)0.34 de structure HTB respectivement. L’étude de leur comportement Ă©lectrochimique montre d’excellentes capacitĂ©s ≈ 170 mAh.g-1 (2-4 V). Afin d’étudier l'impact de la nature des cations 3d sur les performances, les hydrates Ă©quivalents Ă  cations mixtes, M2+Fe3+F5(H2O)2 (M = Mn, Ni) et M2+M3+2F8(H2O)2 (M2+ = Mn, Fe, Co, Ni, Cu ; M3+ = V, Fe), ont Ă©tĂ© synthĂ©tisĂ©s en milieu solvothermal dans une seconde partie. Des intermĂ©diaires amorphes oxyfluorĂ©s apparaissent lors de la dĂ©gradation thermique sous air avec en particulier CuFe2F6O, obtenu Ă  partir de CuFe2F8(H2O)2, qui prĂ©sente une capacitĂ© remarquable de 310 mAh.g-1 (2-4 V). Enfin, des fluorures d’ammonium Ă  cations mixtes NH4M2+Fe3+F6 (M = Mn, Co, Ni, Cu), obtenus par mĂ©canosynthĂšse et la voie solvothermale, ont conduit aux premiers fluorures Ă  cations mixtes trivalents M0.5Fe0.5F3 (M = Mn, Co, Ni, Cu) de structure pyrochlore par oxydation topotactique sous fluor molĂ©culaire F2 en tempĂ©rature

    Investigation of Amorphous Mixed-Metal (Oxy)Fluorides as a New Class of Water Oxidation Electrocatalysts

    No full text
    The development of electrocatalysts for the oxygen evolution reaction (OER) is one of the principal challenges in the area of renewable energy research. Within this context, mixed-metal oxides have recently emerged as the highest performing OER catalysts. Their structural and compositional modification to further boost their activity is crucial to the wide-spread use of electrolysis technologies. In this work, we investigated a series of mixed-metal F-containing materials as OER catalysts to probe possible benefits of the high electronegativity of fluoride ions. We found that crystalline hydrated fluorides, CoFe2F8(H2O)2, NiFe2F8(H2O)2, and amorphous oxyfluorides, NiFe2F4.4O1.8 and CoFe2F6.6O0.7, feature excellent activity and stability for the OER in alkaline electrolyte. Subsequent electroanalytical and spectroscopic characterization hinted that the electronic structure modulation conferred by the fluoride ions aided their reactivity. Finally, the best catalyst of the set, NiFe2F4.4O1.8, was applied as anode in an electrolyzer comprised solely of earth-abundant materials.</p

    Identification and optical features of the Pb<sub>4</sub>Ln<sub>2</sub>O<sub>7</sub> series (Ln = La, Gd, Sm, Nd); genuine 2D-van der Waals oxides

    No full text
    We report on the identification and survey of the Pb4Ln2O7 series (Ln = La, Gd, Sm and Nd) which turn out to be real van der Waals 2D oxides. In the neutral layers, strong covalent Pb–O bonds together with external stereoactive Pb2+ lone pairs, which act as sensitizers, lead to an ideal matrix for enhanced and tunable luminescence by lanthanide emitters, tested here for Sm3+ and Eu3+ doping. DFT calculations and preliminary ex-solution experiments validate the weak bonding between the layers separated by 3.5 Å and suggest a indirect to direct crossover realized by isolating the layers
    corecore